QUANTUM INFORMATION SCIENCE

- How 100-year old concepts
- + Today's state-of-the-art technology
- = Future advances in computing, sensing, communications ...

WHAT WE ARE MADE OF

ABOUT 100 YEARS AGO

BERKELEY LAB

QUANTUM MECHANICS

Strict rules for small things

e.g. quantization

But counterintuitive

If quantum mechanics hasn't profoundly shocked you, you haven't understood it yet.

(Niels Bohr)

If you think you understand quantum mechanics, you don't understand quantum mechanics.

– Richard P. Feynman —

Although quantum mechanics has been around for nearly 70 years, it is still not generally understood or appreciated, even by those that use it to do calculations.

Stephen Hawking —

QUANTUM METROLOGY: e.g. ATOMIC CLOCK

Before 1964: 1 second = 1 day / 86,400 After 1964: 1 second = 9,192,631,770 periods

of the transition between the two hyperfine levels of the unperturbed ground state of the 133Cs atom

The standard kilogram

Accurate to 1 second in 300,000,000 years Atomic Clock at NIST

1 electron

7 nuclear 2 spin

2 spin

EXAMPLE: GPS

The Global Positioning System relies on Atomic Clocks

 \leftarrow If you use something like this, you do too!

A constellation of 24 satellites orbiting 11,000 miles above Earth emits coded signals. Four atomic clocks in each satellite keep accurate time.

2 The portable receiver calculates latitude, longitude, altitude, and time by comparing signals from satellites; location is accurate to within 30 meters, or 100 feet.

AT BERKELEY LAB

SUPERPOSITION

But once there is a *measurement*, it is either

"MAKING A MEASUREMENT"

Quantum objects can exist in multiple states at the same time (superposition)

Thought experiment: Cat in a *closed* box Decay of one atom triggers hammer

DIE NATURWISSENSCHAFTEN 23. Jahrgang 29. November 1935 Hett 48

Die gegenwärtige Situation in der Quantenmechanik. Von E. Scussonourse, Oxford. felabeitewielet. Gebilde, das sich mit der Zeit verändert, d achadens Zweitwie ansetnere karnt: we

Erwin Schrödinger - 1935

9 / P. Denes / Quantum Information Science at Berkeley Lab – CAG Jan. 13, 2020

Until we look

Cat is in a *superposition* of states

$$=p_{L} \times \left| \begin{array}{c} \\ \end{array} \right\rangle + p_{D} \times \left| \begin{array}{c} \\ \end{array} \right\rangle \right\rangle$$

Once we look

Opening the box to observe the cat causes it to abruptly change its quantum state

ENTANGLEMENT

COMPUTATION

QUANTUM LOGIC

WHAT'S THE BEST QUBIT?

https://www.oezratty.net/wordpress/2018/comprendre-informatique-quantique-

WHAT CAN YOU DO WITH IT?

For example: Grover search algorithm $\sim \sqrt{N}$, classical $\sim N$

Find the name in a phone book given the phone number

IN 1/4 CENTURY - 50 YEARS AGO

Point Contact Germanium Bipolar Transistor Bell Labs 1947

Integrated Circuit Texas Instruments 1959

June 23, 1964 J. S. KILBY 3,138,743 MINIATURIZED ELECTRONIC CIRCUITS Filed Feb. 6, 1959 4 Sheets-Sheet 2

INVENTOR Jack S. Kilby

BY Stevens, Bavis, Willey & Mosher ATTORNEYS

Microprocessor (4004) Intel 1971

WE ARE NOT ALONE

OUR ROLE

Early days: We are here

Don't expect your quPhone too soon

Fundamental research to advance Quantum Information Science

- Address grand challenges needed to drive science and technology
- Apply cross-lab expertise in qubits, materials, computing, applications, ...
- Collaborate with academia and industry:

'THE QUANTUM INFORMATION EDGE' STRATEGIC ALLIANCE LAUNCHED IN THE U.S.

PUBLISHED ON DECEMBER 23, 2019 BY THE QUBIT REPOR

18 / P. Denes / Quantum Information Science at Berkeley Lab – CAG Jan. 13, 2020

+ industry partners and growing ...